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Instanton Approach to the Langevin Motion of a Particle in a Random Potential
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We develop an instanton approach to the nonequilibrium dynamics in one-dimensional random en-
vironments. The long time behavior is controlled by rare fluctuations of the disorder potential and,
accordingly, by the tail of the distribution function for the time a particle needs to propagate along the
system (the delay time). The proposed method allows us to find the tail of the delay time distribution
function and delay time moments, providing thus an exact description of the long time dynamics. We
analyze arbitrary environments covering different types of glassy dynamics: dynamics in a short-range
random field, creep, and Sinai’s motion.
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One-dimensional driven dynamics in a random envi-
ronment attracts a great deal of current attention. The
motivation of the interest is twofold: First, the propa-
gation of a particle through a 1D random potential has
become a paradigm of generality for out-of-equilibrium
stochastic processes in random systems capturing all ef-
fects of glassy dynamics including aging and memory
effects [1–4]. Second, a particle moving in a 1D ran-
dom potential models straightforwardly a variety of physi-
cal systems ranging from dislocations and charge density
waves in solids, spin-chain dynamics and domain growth,
to protein molecules and bacterial colonies [1,2,4–6]. The
attraction of the 1D models is thus that while allowing
for an analytical treatment (and often even for a full ana-
lytical solution) they also offer insight into generic basic
properties of the wealth of glassy out-of-equilibrium sys-
tems. Indeed, even the simplest 1D models with the Gauss-
ian correlated potential y�x�, with �y�x�� � 0, ��y�x� 2

y�0��2� � kjxjg exhibit a striking generality and diversity
of glassy behaviors [7,8].

The approach employed in [7,8] enables the exact
derivation of the particle velocity, but it does not allow
for a complete dynamic description of the system— for
example, in terms of velocity cumulants and/or correlation
functions. Taking a kinetic view of the problem one can
characterize the dynamic properties of a random system
by the probability distribution for the particle velocity or,
equivalently, by the probability distribution for the particle
delay time t. The latter is defined as an average time that
a driven particle spends to propagate through the sample,
and the corresponding distribution function P�t� charac-
terizes completely the transport properties of the system
involved. The seminal works [9–11] demonstrated the
power of the P�t�-based approach to stochastic transport
in disordered solids and showed that the algebraic P�t�
leads to anomalous diffusion. Yet the mechanism for the
origin of such algebraic tails or, more generally, of the
Levy distributions for t remained an open question. The
aim of our work is to bridge between the solvable 1D
models and the master equation methods of [9–11].
0031-9007�01�86(9)�1817(4)$15.00 ©
The exact expressions for a particle velocity derived in
[7,8] indicate that the system dynamics is governed by rare
fluctuations of the random potential, i.e., by the tail of the
delay time distribution function. Thus the instanton solu-
tion for the Langevin equation in the presence of an ex-
ternal force offers a most adequate description of the long
time glassy dynamics in an arbitrary 1D random environ-
ment. In this Letter we apply the instanton method de-
veloped earlier in [12,13] to find the asymptotic behavior
of the delay time distribution function P�t� at large t. In
general, the idea of the instanton method is to pick up the
largest contribution to the functional integral coming from
an optimal configuration instead of implementing the com-
plete integration. In our case of low enough temperatures,
the delay time is mainly determined by the transition over
the largest barrier in the system. Since this time is expo-
nentially large, one expects that the delay time averaged
over the random potential (or any of its higher moments)
is determined by the saddle point trajectory of some ef-
fective action controlling this exponential behavior, and,
thus, it can be most appropriately found by the instanton
method indeed. Further, knowing all the moments of the
delay time one can reconstruct the large t asymptotics of
the distribution function P�t�.

The distribution function P�t� depends strongly on the
specific form of the correlation function of the random
potential u�x�. We restrict ourselves to Gaussian disorder
with the correlation function

�y�x1�y�x2��d � u�x1 2 x2�, �y�x�� � 0 . (1)

We use also the function

K�x� � ��y�0� 2 y�x��2�d � 2�u�0� 2 u�x�� , (2)

which is more convenient in the case of the long-range cor-
related potential. In the case of the short-range correlated
potential, when u�x� monotonically decreases to zero as a
function of jxj, we find that the delay time distribution is
log-normal

lnP̃�Y � � 2
T2Y2

4u�0�
, (3)
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where Y � lnt. The distribution function P̃�Y � is defined
as the distribution function of lnt, being therefore related
to the distribution function P�t� by

P�t� �
1
t

P̃�lnt� . (4)

In the case of the long-range correlated potential K�x� �
kjxjg , with k . 0 and 0 , g , 1, the distribution func-
tion essentially depends on the applied field E:

lnP̃�Y � � 2
2
k

∑
TY

2 2 g

∏22g∑
E
g

∏g

. (5)

And, finally, for the so-called Sinai model [14] K�x� �
kjxj we obtain

P�t� � t22TE�k21, (6)

which agrees with the earlier result of Ref. [3] (see
also [1]).

The model and results.—The dynamics of a particle in
a potential y�x� is described by the Langevin equation

G21≠tx�t� � 2b≠xy�x� 1 bE 1 j�t� , (7)

where b is the inverse temperature, G is the inverse relax-
ation time, y�x� is the random potential, E is the applied
uniform field, and j�t� is the Langevin thermal noise that
models the thermal environment,

�j�t1�j�t2��T � 2G21d�t1 2 t2� . (8)

To distinguish between the average over the thermal
noise and disorder averaging we denote the former by the
subscript T . The inverse relaxation time G will be set
henceforth to 1 for convenience. Making use of the stan-
dard approach (see, for example, Ref. [15]) one can write
the Lagrangian corresponding to Eq. (7) in the form

L � 2
1
4

�≠tx 2 bE 1 b≠xy�x��2 1
b

2
y00�x� . (9)

It is very convenient to decouple the square in the above
Lagrangian introducing an auxiliary field x̂:

L � 2x̂2 2 ix̂�≠tx 2 bE 1 b≠xy�x�� 1
b

2
y00�x� .

(10)

Further we will set b � 1 measuring energies in the units
of temperature. The probability for a particle to go from
point x1 to x2 is given by the functional integral

P�x1, x2� �
Z

D�x�t�� D�x̂�t�� e
R

dt L , (11)

and the time a particle spends moving from x1 to x2 (the
delay time) is, correspondingly,

t�x1, x2� � P21�x1, x2� . (12)

If the temperature is lower than a typical barrier, one can
use the saddle point approximation to find P:
1818
P�x1, x2� � e2As.p. , (13)

where the action As.p. is the saddle point value of the action
A corresponding to the Lagrangian (10): A � 2

R
dt L .

Within the accuracy of the saddle point approximation the
delay time t�x1, x2� is given by the saddle point value of
the action A:

t�x1, x2� � P21�x1, x2� � eAs.p. . (14)

The delay time t�x1, x2� averaged over the disorder is

�t�x1, x2��d �
Z

D�y� eA�y,x�, (15)

where the effective action

A�y, x� � 2
1
2

Z
dx1dx2 y�x1�f�x1, x2�y�x2� 2

Z
dt L

(16)

is to be taken at the saddle configuration with respect to
fields x, x̂. The function f in (16) is the inverse correlation
function (1):

R
dx f�x1, x�u�x, x2� � d�x1 2 x2�. Taking

the variational derivatives of the action (16) with respect
to x̂, x, y we find the saddle point equations

22x̂ 1 ≠tx 2 E 1 ≠xy�x� � 0 , (17)

≠t x̂ 2 x̂y00�x� � 0 , (18)

y�x� � 2
Z

dt x̂�t�u0�x 2 x�t�� , (19)

where the variable x̂ was redefined ix̂ ! x̂, so that the
saddle value of the redefined variable x̂ became real. The
fact that the original variable x̂ has imaginary saddle value
is not a problem since the contour of integration over x̂
may be shifted parallel to the imaginary axis in the com-
plex plain. When deriving Eqs. (17)–(19) the last term in
Eq. (10) was neglected because it gives the O �1� contri-
bution to the action while the whole action is much larger
than one. Following Ref. [12] (see also Ref. [13]), in order
to find an instanton solution we choose x̂ � ≠tx. Indeed,
this allows one to reduce Eqs. (17) and (18) to a single
equation:

≠tx � 2E 1 ≠xy�x� . (20)

Assuming that the instanton solution x̂ � ≠tx exists in the
interval �h1, h2� we find from Eq. (19)

y�x� � u�x 2 h2� 2 u�x 2 h1� . (21)

The interval �h1, h2�, where the instanton solution exists,
must lie within the interval �x1, x2�; we will see later,
however, that these intervals do not necessarily coincide.
Outside the interval �h1, h2� one should take the normal
solution in the form

x̂ � 0, ≠tx � E 2 ≠xy�x� . (22)
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The action (16) corresponding to the solution (20) is

A �
1
2

�y�h2� 2 y�h1�� 2 E�h2 2 h1� . (23)

Now we need to find an equation that determines the
boundaries of the instanton solution. We assume that
the disorder correlation function u�x� is smooth enough,
namely, that the second derivative is finite. Then it follows
from Eqs. (18) and (21) that x̂ is continuous because oth-
erwise the first term in Eq. (18) would have been singular
while the second term according to (21) remained regular.
Since within the interval �h1, h2�x̂ � ≠tx, and x̂ � 0 out-
side it, then x̂ � ≠tx � 0 at the boundaries h1, h2, and
from Eqs. (20) and (21) we get the equation

E � 2u0�h2 2 h1� (24)

defining h2 2 h1, and the action (23) becomes

A � u�0� 2 u�h� 2 Eh , (25)

where h � h2 2 h1. Note that Eq. (24) corresponds to
the extremum of the action (25) with respect to h, so the
final expression can be presented as the maximum of

A �
1
2

K�h� 2 Eh , (26)

with K�x� given by (2). In case of long-range potential
K�x� � jxjg the above considerations will still hold if we
regularize the function K�x� using, for example, regular-
ization jxj ! �x2 1 e�1�2 with e being a small positive
number. The necessity of such regularization is physically
natural since the correlation function K�x� must be smooth.
Thus, formula (26) applies to an arbitrary disorder corre-
lation function, its concrete realization following from the
specific form of K�x�.

(i) Short-range potential: We begin with the simplest
case of u�x� ! 0 monotonically with growing jxj. The
corresponding form of the effective potential y�x� is shown
in Fig. 1. From Eq. (24) it follows that h ! ` when
E ! 0; thus if E is low enough, the action becomes

A � u�0� . (27)

(ii) Potential with long-range correlations: Take the
potential with correlator K�x� � kjxjg , with k . 0 and

η1

η2

FIG. 1. The instanton solution for the potential y�x� in the
case of short-range potential.
0 , g , 1. In this case the expression for the action (26)
still holds; however, minimizing (26) with respect to h we
arrive at the action diverging at low fields:

A � �1 2 g�
µ

k

2

∂ 1
12g

µ
g

E

∂ g

12g

(28)

in agreement with the exact solution obtained in Ref. [8].
(iii) “Extremely correlated” disorder, g � 1. This is

the well-known Sinai model K�x� � kjxj. Keeping in
mind the regularization described above, the boundaries
of the instanton solution are still determined by Eq. (24).
But in this case Eq. (24) is either never satisfied or it
is satisfied identically for a special value of the applied
field E � E0 � k�2. Thus, for E , E0, there exists the
only instanton solution with boundaries (h1, h2) coincid-
ing with the sample boundaries (x1, x2). The action corre-
sponding to this solution is

A � �k�2 2 E� �x2 2 x1� , (29)

and the average delay time essentially (exponentially) de-
pends on the sample length. In the case E . E0 the in-
stanton solution does not exist.

Distribution function of the delay time.—The method
described above can be generalized straightforwardly for a
calculation of higher moments of t�x1, x2�:

tn�x1, x2� � �tn�x1, x2��d . (30)

The action An that determines the nth moment

�tn�x1, x2��d � eAn�y,x� (31)

is given by

An�y, x� � 2
1
2

Z
dx1dx2 y�x1�f�x1, x2�y�x2�

2 n
Z

dt L . (32)

From this equation one can see that An�u�x�, x� �
nA�nu�x�, x�, and from Eq. (26) we get the action An:

An � n2K�h��2 2 nEh , (33)

which must be maximized with respect to h. This gives

nK 0�h��2 2 E � 0 . (34)

Knowing all the moments of t one can find the distribution
function P�t�. Indeed, in terms of the distribution function
P�t�, the moments tn are defined as

tn �
Z

P�t�tn dt �
Z

P̃�Y �enY dY . (35)

Using Eq. (33) and taking integrals in Eq. (35) in the sad-
dle point approximation we get

	lnP̃�Y � 1 nY 
Y � 	n2K�h��2 2 Enh
h , (36)

where 	 
Y and 	 
h mean taking extrema with respect to Y
and h, respectively. Differentiating (36) with respect to n
we get
1819
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n �
Y 1 Eh

K�h�
. (37)

Using Eq. (36) we find the distribution function

lnP̃�Y � � 2
1
2

�Y 1 Eh�2

K�h�
, (38)

where h is defined by the equation

K 0�h� �Y 1 Eh� 2 2EK�h� � 0 , (39)

following from Eqs. (34) and (37). Interestingly, this equa-
tion also follows from the extremum of the logarithm of the
distribution function (38) with respect to h.

The distribution function (38) is our main general result.
Now we analyze different cases:

(i) For the short-range potential and not too strong ap-
plied field, Eq. (38) gives the log-normal distribution:

lnP̃�Y � � 2
Y2

4u�0�
. (40)

(ii) For the correlated potential, K�x� � kjxjg , 0 ,

g , 1, Eq. (39) yields

h �
gY

E�2 2 g�
, (41)

and the distribution function (38) becomes

lnP̃�Y � � 2
2
k

∑
Y

2 2 g

∏22g∑
E
g

∏g

. (42)

(iii) Although in the Sinai case (g � 1) the moments of
t are not defined in the limit of a large system, Eq. (5) has
no singularities when g � 1. Therefore, the distribution
function in the Sinai case is given by

P�t� � t22E�k21, (43)

which agrees with the earlier result [1,3].
Discussion.— In case of disorder potential with short-

range correlations the distribution function of the delay
time is log-normal [see Eq. (3)] and is not sensitive to
the applied electric field. Since the logarithm of the delay
time is proportional to the largest barrier in the sample,
the result (3) means that the distribution of the heights of
the largest barrier in the sample is Gaussian. In case of the
long-range correlated potential, the distribution function
(5) depends essentially on the applied driving field E even
in the limit of E ! 0. The distribution function is still
normalizable and has finite moments as long as E . 0.
The average delay time is given by (28) and it diverges
exponentially when E ! 0; this behavior corresponds to
and characterizes the creep regime. In the Sinai case the
distribution function is normalizable when E . 0, but the
1820
moments are not defined in the limit of the large length
of the sample. The average delay time shows exponential
dependence on the sample size (29).

In conclusion, we have found the asymptotic behavior of
the delay time distribution function for a general problem
of the Langevin motion of a particle in a one-dimensional
random potential. The application of our procedure to the
Sinai model recovers the earlier results verifying our ap-
proach. The developed instanton method allows one to
derive the distribution function for an arbitrary 1D random
potential and can serve as an initial step towards a quan-
titative study of the glassy dynamics of the general mul-
tidimensional systems. The method proposed can also be
generalized for calculation of other correlation functions
which are determined by the contribution from the largest
barrier in the system.
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